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Project 2

The origin of many formulas and principles in calculus comes from the trial-and-error of
many mathematicians, which is evidently shown in the integrating factor of first-order
differential equations. The following tasks go through the process of laying the foundation for
the integrating factor.

Task 1: What are the “curve,” “tangent line,” and “particular law” of differential
equations in the form ? 𝑑𝑦

𝑑𝑥  =  𝑓(𝑥, 𝑦)

The “curve” is the solution to the differential equation, giving the change over time.
The “tangent line” is the slope of that curve at any given x,y coordinate.
The particular law is the constraints that the equation must follow, or the context of the

problem you are solving for.

Task 2: How do you turn a non-homogeneous differential equation into a monic differential
equation? Why can we assume p(x) isn’t identically zero? Write P(x) and Q(x) in terms of
p(x), q(x), and f(x).
Non-homogenous form: 𝑝(𝑥) 𝑑𝑦

𝑑𝑥  +  𝑞(𝑥)𝑦 =  𝑓(𝑥)

Monic form:  𝑑𝑦
𝑑𝑥  +  𝑃(𝑥)𝑦 =  𝑄(𝑥)

=>𝑝(𝑥) 𝑑𝑦
𝑑𝑥  +  𝑞(𝑥)𝑦 =  𝑓(𝑥) 𝑑𝑦

𝑑𝑥  +  𝑞(𝑥)𝑦
𝑝(𝑥)  =  𝑓(𝑥)

𝑝(𝑥)

Showing and𝑃(𝑥)𝑦 =  𝑞(𝑥)𝑦
𝑝(𝑥) 𝑄(𝑥) =  𝑓(𝑥)

𝑝(𝑥)

You can assume p(x) isn’t identically zero because it would result in becoming zero in the𝑑𝑦
𝑑𝑥

non-homogenous form, and it would make P(x) and Q(x) undefined in the monic form.

Task 3: How did Leibniz go from to ?∫ 𝑚𝑝𝑑𝑥  +  𝑝𝑦 =  0   𝑚𝑝𝑑𝑥 +  𝑦𝑑𝑝 +  𝑝𝑑𝑦 =  0

Taking the derivative of each term, using the product rule (
for , has the following results:(𝑓(𝑥)𝑔(𝑥))𝑙 = 𝑓𝑙(𝑥)𝑔(𝑥) +  𝑓(𝑥)𝑔𝑙(𝑥)) 𝑝𝑦

=>𝑑
𝑑𝑥 ∫ 𝑚𝑝𝑑𝑥 +  𝑑

𝑑𝑥 𝑝𝑦 =  0 𝑚𝑝𝑑𝑥 +  𝑑𝑝𝑦 +  𝑝𝑑𝑦 =  0



Explain how Leibniz went from to .∫ 𝑑𝑝
𝑝 = ∫ 𝑛𝑑𝑥 𝑑𝑝 =  𝑝𝑛𝑑𝑥

If you take the derivative of each side, and then multiply each term by , you will get the result:𝑝

=> => *any resulting constants are𝑑
𝑑𝑥 ∫ 𝑑𝑝

𝑝 = 𝑑
𝑑𝑥 ∫ 𝑛𝑑𝑥 𝑑𝑝

𝑝 = 𝑛𝑑𝑥 𝑑𝑝 =  𝑝𝑛𝑑𝑥

insignificant*

How did Leibniz combine the first two problems to obtain ?𝑚𝑑𝑥 +  𝑛𝑦𝑑𝑥 +  𝑑𝑦 =  0
Starting with the first equation, if you divide each term by , and then substitute with𝑝 𝑑𝑝 𝑝𝑛𝑑𝑥
from the second equation, you will get the result:

=> =>𝑚𝑝𝑑𝑥 +  𝑑𝑝𝑦 +  𝑝𝑑𝑦 = 0 𝑚𝑑𝑥 +  𝑑𝑝𝑦
𝑝  + 𝑑𝑦 = 0 𝑚𝑑𝑥 +  𝑝𝑛𝑑𝑥𝑦

𝑝 + 𝑑𝑦 = 0

=> 𝑚𝑑𝑥 +  𝑛𝑑𝑥𝑦 +  𝑑𝑦 =  0

Why is this the “desired” result?
Leibniz started with a potential solution to the original problem, and this result is ideal because it
proves that it is a solution.

Task 4: Turn the implicit solution into an explicit one by solving for y.

The implicit solution can be turned into an explicit one by moving to the other side,𝑚𝑑𝑥
dividing each term by , moving to the other side, and then dividing by .𝑑𝑥 𝑑𝑦

𝑑𝑥 𝑛

=> => =>𝑚𝑑𝑥 +  𝑛𝑦𝑑𝑥 +  𝑑𝑦 =  0 𝑛𝑦𝑑𝑥 +  𝑑𝑦 =  − 𝑚𝑑𝑥 𝑛𝑦 + 𝑑𝑦
𝑑𝑥 =  − 𝑚

=>𝑛𝑦 =  − 𝑚 − 𝑑𝑦
𝑑𝑥 𝑦 =  

−𝑚− 𝑑𝑦
𝑑𝑥

𝑛

Task 5: Consider the equation . Switch the variables x and y, solve for ,𝑑𝑦
𝑑𝑥 = α

(𝑦−𝑥)
𝑑𝑦
𝑑𝑥

and then compare to previous equations (1 and 2). How does this relate to P(x) and Q(x)?

switching the variables → . From here you can multiply both sides𝑑𝑦
𝑑𝑥 = α

(𝑦−𝑥)
𝑑𝑥
𝑑𝑦 = α

(𝑥−𝑦)

by , multiply by , and divide by .(𝑥 − 𝑦) 𝑑𝑦
𝑑𝑥 α

=> => =>𝑑𝑥
𝑑𝑦 = α

(𝑥−𝑦)
𝑑𝑥
𝑑𝑦 (𝑥 − 𝑦) =  α 𝑥 − 𝑦 =  α 𝑑𝑦

𝑑𝑥   𝑑𝑦
𝑑𝑥  =  1

α 𝑥 −  1
α 𝑦



Comparing this to and , we can see that𝑝(𝑥) 𝑑𝑦
𝑑𝑥 + 𝑞(𝑥)𝑦 =  𝑓(𝑥)    𝑑𝑦

𝑑𝑥 + 𝑃(𝑥)𝑦 =  𝑄(𝑥)

there is a relation. By rewriting to , we can see that𝑥 − 𝑦 = α 𝑑𝑦
𝑑𝑥 α 𝑑𝑦

𝑑𝑥 + 𝑦 = 𝑥 𝑝(𝑥) =  α

, with and . and𝑞(𝑥)𝑦 =  𝑦 𝑓(𝑥) =  𝑥 𝑃(𝑥)𝑦 =  𝑞(𝑥)𝑦
𝑝(𝑥)  =  𝑦

α 𝑄(𝑥) =  𝑓(𝑥)
𝑝(𝑥) = 𝑥

α

Task 6: Using , rewrite in the form Leibniz uses to begin his process, what 𝑥 𝑑𝑦
𝑑𝑥 + 𝑦 = 3𝑥2

are m and n, solve for p, verify the solution solves the original differential equation, and
solve for y to show it solves the equation.

Leibniz started with a monic equation, so we need to rewrite the equation, and we also need to
see the relationship between the monic form we know and the implicit solution used earlier.

******************* Used repeatedly in the rest of this assignment ********************
The monic form we know is , and we need to manipulate this into the  𝑑𝑦

𝑑𝑥 + 𝑃(𝑥)𝑦 =  𝑄(𝑥)

form . By dividing each term by and moving everything to one side,𝑚𝑑𝑥 + 𝑛𝑦𝑑𝑥 + 𝑑𝑦 = 0 𝑑𝑥
we get

=> =>𝑑𝑦
𝑑𝑥 + 𝑃(𝑥)𝑦 = 𝑄(𝑥) 𝑑𝑦

𝑑𝑥 + 𝑃(𝑥)𝑦 + (− 𝑄(𝑥)) =  0

, where and in the implicit solution.𝑑𝑦 + 𝑃(𝑥)𝑦𝑑𝑥 + (− 𝑄(𝑥))𝑑𝑥 = 0 𝑃(𝑥) =  𝑛 𝑄(𝑥) =− 𝑚
*************************************************************************

Now we should rewrite as after dividing by x. We can𝑥 𝑑𝑦
𝑑𝑥 + 𝑦 = 3𝑥2     𝑑𝑦

𝑑𝑥 + 1
𝑥 𝑦 =  3𝑥

see from the general monic form that and , and we just showed that𝑃(𝑥) =  1
𝑥 𝑄(𝑥) =  3𝑥

this means and .𝑛 =  1
𝑥 𝑚 =− 3𝑥

Leibniz also gives us , which we can use to solve for𝑑𝑝
𝑝 = 𝑑𝑥

𝑥 𝑝.

=> => =>𝑑𝑝
𝑝 = 𝑑𝑥

𝑥 ∫ 𝑑𝑝
𝑝 = ∫ 𝑑𝑥

𝑥 𝑙𝑛(𝑝) = 𝑙𝑛(𝑥) 𝑝 = 𝑥

We can substitute those values into to see if it is a solution to the original∫ 𝑚𝑝𝑑𝑥 +  𝑝𝑦 = 0

differential equation.

=> =>∫ 𝑚𝑝𝑑𝑥 + 𝑝𝑦 = 0 ∫− 3𝑥(𝑥)𝑑𝑥 +  𝑥𝑦 =  0 − 𝑥3 + 𝑥𝑦 = 0

By taking the derivative of this, we can show that it is our original equation.

=> => =>− 𝑥3 + 𝑥𝑦 = 0 𝑑
𝑑𝑥 (− 𝑥3 + 𝑥𝑦) = 0 − 3𝑥2𝑑𝑥 + 𝑥𝑑𝑦 + 𝑦𝑑𝑥 = 0

=> =>𝑥𝑑𝑦 + 𝑦𝑑𝑥 = 3𝑥2𝑑𝑥 𝑑𝑦 + 𝑦𝑑𝑥
𝑥 = 3𝑥𝑑𝑥 𝑑𝑦

𝑑𝑥 + 1
𝑥 𝑦 = 3𝑥



This does equal the original equation. We can also solve the solution for y and prove it is a
solution.

=> => =>− 𝑥3 + 𝑥𝑦 = 0 𝑥𝑦 = 𝑥3 𝑦 = 𝑥2 𝑦𝑙 = 2𝑥

=> =>𝑑𝑦
𝑑𝑥 + 1

𝑥 𝑦 = 3𝑥 2𝑥 + 1
𝑥 𝑥2 = 3𝑥 3𝑥 = 3𝑥

Task 7: Follow the steps of task 6, solving for .𝑑𝑦
𝑑𝑥 − 𝑦 = 𝑥𝑒𝑥

This equation is already in monic form, and we have already proved the relationship between the

monic form and the implicit solution, so we can see that and .𝑛 =− 1 𝑚 =− 𝑥𝑒𝑥

=> =>∫ 𝑑𝑝
𝑝 = ∫ 𝑛𝑑𝑥 𝑙𝑛(𝑝) =  − 𝑥 𝑝 = 𝑒−𝑥

We can then substitute and into to find what should be the solution to𝑚 𝑝 ∫ 𝑚𝑝𝑑𝑥 + 𝑝𝑦 = 0

the original equation.

=> => - =>∫ 𝑚𝑝𝑑𝑥 + 𝑝𝑦 = 0 ∫− 𝑥𝑒𝑥(𝑒−𝑥)𝑑𝑥 + (𝑒−𝑥)𝑦 = 0 ∫ 𝑥𝑑𝑥 + 𝑒−𝑥𝑦 = 0

− 1
2 𝑥2 + 𝑒−𝑥𝑦 = 0

Taking the derivative of that: =>𝑑
𝑑𝑥 (− 1

2 𝑥2 + 𝑒−𝑥𝑦) = 0

=> =>− 1
2 (2)𝑥𝑑𝑥 + (− 𝑒−𝑥)𝑦 + 𝑒−𝑥𝑑𝑦 = 0 − 𝑥𝑑𝑥 − 𝑒−𝑥𝑑𝑥𝑦 + 𝑒−𝑥𝑑𝑦 = 0

=> => , which is equal to𝑑𝑦 − 𝑦𝑑𝑥 − 𝑒𝑥𝑥𝑑𝑥 = 0 𝑑𝑦
𝑑𝑥 − 𝑦 − 𝑒𝑥𝑥 = 0 𝑑𝑦

𝑑𝑥 − 𝑦 = 𝑥𝑒𝑥

the original differential equation. We can also solve for y to see if it is equal.

=> => => =>− 1
2 𝑥2 + 𝑒−𝑥𝑦 = 0 𝑒−𝑥𝑦 = 1

2 𝑥2 𝑦 = 1𝑥2

2𝑒−𝑥 = 𝑥2𝑒𝑥

2 𝑦𝑙 = 𝑒𝑥𝑥 + 𝑒𝑥𝑥2

2

=> =>𝑑𝑦
𝑑𝑥 − 𝑦 = 𝑥𝑒𝑥 𝑒𝑥𝑥 + 𝑒𝑥𝑥2

2 − 𝑒𝑥𝑥2

2 = 𝑒𝑥𝑥 𝑒𝑥𝑥 = 𝑒𝑥𝑥

Task 8: Show that is the same as .µ 𝑝 𝑑𝑦
𝑑𝑥 + 𝑃(𝑥)𝑦 = 𝑄(𝑥) µ = 𝑒

∫𝑃(𝑥)𝑑𝑥

∫ 𝑑𝑝
𝑝 = ∫ 𝑛𝑑𝑥



We proved earlier that , which can be used to help us work through this relationship.𝑃(𝑥) =  𝑛

Using , and only taking the derivative of one side => =>∫ 𝑑𝑝
𝑝 = ∫ 𝑛𝑑𝑥 𝑙𝑛(𝑝) =  ∫ 𝑛𝑑𝑥 

𝑝 = 𝑒
∫𝑛𝑑𝑥

This can be rewritten as , which means𝑝 = 𝑒
∫𝑃(𝑥)𝑑𝑥

µ = 𝑝

In conclusion, I greatly appreciate the fact that I have the ability to take calculus after all
the hard stuff has been figured out for me. These tasks showed us the process of finding the
integrating factor of first-order differential equations through multiple forms of equations and
thinking processes.


